-
LEHD Snapshot Documentation, Release S2021_R2022Q4
November 2022
Working Paper Number:
CES-22-51
The Longitudinal Employer-Household Dynamics (LEHD) data at the U.S. Census Bureau is a quarterly database of linked employer-employee data covering over 95% of employment in the United States. These data are used to produce a number of public-use tabulations and tools, including the Quarterly Workforce Indicators (QWI), LEHD Origin-Destination Employment Statistics (LODES), Job-to-Job Flows (J2J), and Post-Secondary Employment Outcomes (PSEO) data products. Researchers on approved projects may also access the underlying LEHD microdata directly, in the form of the LEHD Snapshot restricted-use data product. This document provides a detailed overview of the LEHD Snapshot as of release S2021_R2022Q4, including user guidance, variable codebooks, and an overview of the approvals needed to obtain access. Updates to the documentation for this and future snapshot releases will be made available in HTML format on the LEHD website.
View Full
Paper PDF
-
U.S. Long-Term Earnings Outcomes by Sex, Race, Ethnicity, and Place of Birth
May 2021
Working Paper Number:
CES-21-07R
This paper is part of the Global Income Dynamics Project cross-country comparison of earnings inequality, volatility, and mobility. Using data from the U.S. Census Bureau's Longitudinal Employer-Household Dynamics (LEHD) infrastructure files we produce a uniform set of earnings statistics for the U.S. From 1998 to 2019, we find U.S. earnings inequality has increased and volatility has decreased. The combination of increased inequality and reduced volatility suggest earnings growth differs substantially across different demographic groups. We explore this further by estimating 12-year average earnings for a single cohort of age 25-54 eligible workers. Differences in labor supply (hours paid and quarters worked) are found to explain almost 90% of the variation in worker earnings, although even after controlling for labor supply substantial earnings differences across demographic groups remain unexplained. Using a quantile regression approach, we estimate counterfactual earnings distributions for each demographic group. We find that at the bottom of the earnings distribution differences in characteristics such as hours paid, geographic division, industry, and education explain almost all the earnings gap, however above the median the contribution of the differences in the returns to characteristics becomes the dominant component.
View Full
Paper PDF
-
Male Earnings Volatility in LEHD before, during, and after the Great Recession
September 2020
Working Paper Number:
CES-20-31
This paper is part of a coordinated collection of papers on prime-age male earnings volatility. Each paper produces a similar set of statistics for the same reference population using a different primary data source. Our primary data source is the Census Bureau's Longitudinal Employer-Household Dynamics (LEHD) infrastructure files. Using LEHD data from 1998 to 2016, we create a well-defined population frame to facilitate accurate estimation of temporal changes comparable to designed longitudinal samples of people. We show that earnings volatility, excluding increases during recessions, has declined over the analysis period, a finding robust to various sensitivity analyses. Although we find volatility is declining, the effect is not homogeneous, particularly for workers with tenuous labor force attachment for whom volatility is increasing. These 'not stable' workers have earnings volatility approximately 30 times larger than stable workers, but more important for earnings volatility trends we observe a large increase in the share of stable employment from 60% in 1998 to 67% in 2016, which we show to largely be responsible for the decline in overall earnings volatility. To further emphasize the importance of not stable and/or low earning workers we also conduct comparisons with the PSID and show how changes over time in the share of workers at the bottom tail of the cross-sectional earnings distributions can produce either declining or increasing earnings volatility trends.
View Full
Paper PDF
-
Total Error and Variability Measures for the Quarterly Workforce Indicators and LEHD Origin Destination Employment Statistics in OnTheMap
September 2020
Working Paper Number:
CES-20-30
We report results from the first comprehensive total quality evaluation of five major indicators in the U.S. Census Bureau's Longitudinal Employer-Household Dynamics (LEHD) Program Quarterly Workforce Indicators (QWI): total flow-employment, beginning-of-quarter employment, full quarter employment, average monthly earnings of full-quarter employees, and total quarterly payroll. Beginning-of-quarter employment is also the main tabulation variable in the LEHD Origin-Destination Employment Statistics (LODES) workplace reports as displayed in On-TheMap (OTM), including OnTheMap for Emergency Management. We account for errors due to coverage; record-level non response; edit and imputation of item missing data; and statistical disclosure limitation. The analysis reveals that the five publication variables under study are estimated very accurately for tabulations involving at least 10 jobs. Tabulations involving three to nine jobs are a transition zone, where cells may be fit for use with caution. Tabulations involving one or two jobs, which are generally suppressed on fitness-for-use criteria in the QWI and synthesized in LODES, have substantial total variability but can still be used to estimate statistics for untabulated aggregates as long as the job count in the aggregate is more than 10.
View Full
Paper PDF
-
United States Earnings Dynamics: Inequality, Mobility, and Volatility
September 2020
Working Paper Number:
CES-20-29
Using data from the Census Bureau's Longitudinal Employer-Household Dynamics (LEHD) infrastructure files, we study changes over time and across sub-national populations in the distribution of real labor earnings. We consider four large MSAs (Detroit, Los Angeles, New York, and San Francisco) for the period 1998 to 2017, with particular attention paid to the subperiods before, during, and after the Great Recession. For the four large MSAs we analyze, there are clear national trends represented in each of the local areas, the most prominent of which is the increase in the share of earnings accruing to workers at the top of the earnings distribution in 2017 compared with 1998. However, the magnitude of these trends varies across MSAs, with New York and San Francisco showing relatively large increases and Los Angeles somewhere in the middle relative to Detroit whose total real earnings distribution is relatively stable over the period. Our results contribute to the emerging literature on differences between national and regional economic outcomes, exemplifying what will be possible with a new data exploration tool'the Earnings and Mobility Statistics (EAMS) web application'currently under development at the U.S. Census Bureau.
View Full
Paper PDF
-
A New Measure of Multiple Jobholding in the U.S. Economy
September 2020
Working Paper Number:
CES-20-26
We create a measure of multiple jobholding from the U.S. Census Bureau's Longitudinal Employer-Household Dynamics data. This new series shows that 7.8 percent of persons in the U.S. are multiple jobholders, this percentage is pro-cyclical, and has been trending upward during the past twenty years. The data also show that earnings from secondary jobs are, on average, 27.8 percent of a multiple jobholder's total quarterly earnings. Multiple jobholding occurs at all levels of earnings, with both higher- and lower-earnings multiple jobholders earning more than 25 percent of their total earnings from multiple jobs. These new statistics tell us that multiple jobholding is more important in the U.S. economy than we knew.
View Full
Paper PDF
-
Releasing Earnings Distributions using Differential Privacy: Disclosure Avoidance System For Post Secondary Employment Outcomes (PSEO)
April 2019
Working Paper Number:
CES-19-13
The U.S. Census Bureau recently released data on earnings percentiles of graduates from post secondary institutions. This paper describes and evaluates the disclosure avoidance system developed for these statistics. We propose a differentially private algorithm for releasing these data based on standard differentially private building blocks, by constructing a histogram of earnings and the application of the Laplace mechanism to recover a differentially-private CDF of earnings. We demonstrate that our algorithm can release earnings distributions with low error, and our algorithm out-performs prior work based on the concept of smooth sensitivity from Nissim, Raskhodnikova and Smith (2007).
View Full
Paper PDF
-
Optimal Probabilistic Record Linkage: Best Practice for Linking Employers in Survey and Administrative Data
March 2019
Working Paper Number:
CES-19-08
This paper illustrates an application of record linkage between a household-level survey and an establishment-level frame in the absence of unique identifiers. Linkage between frames in this setting is challenging because the distribution of employment across firms is highly asymmetric. To address these difficulties, this paper uses a supervised machine learning model to probabilistically link survey respondents in the Health and Retirement Study (HRS) with employers and establishments in the Census Business Register (BR) to create a new data source which we call the CenHRS. Multiple imputation is used to propagate uncertainty from the linkage step into subsequent analyses of the linked data. The linked data reveal new evidence that survey respondents' misreporting and selective nonresponse about employer characteristics are systematically correlated with wages.
View Full
Paper PDF
-
Innovation, Productivity Dispersion, and Productivity Growth
February 2018
Working Paper Number:
CES-18-08
We examine whether underlying industry innovation dynamics are an important driver of the large dispersion in productivity across firms within narrowly defined sectors. Our hypothesis is that periods of rapid innovation are accompanied by high rates of entry, significant experimentation and, in turn, a high degree of productivity dispersion. Following this experimentation phase, successful innovators and adopters grow while unsuccessful innovators contract and exit yielding productivity growth. We examine the dynamic relationship between entry, productivity dispersion, and productivity growth using a new comprehensive firm-level dataset for the U.S. We find a surge of entry within an industry yields an immediate increase in productivity dispersion and a lagged increase in productivity growth. These patterns are more pronounced for the High Tech sector where we expect there to be more innovative activities. These patterns change over time suggesting other forces are at work during the post-2000 slowdown in aggregate productivity.
View Full
Paper PDF
-
Disclosure Limitation and Confidentiality Protection in Linked Data
January 2018
Working Paper Number:
CES-18-07
Confidentiality protection for linked administrative data is a combination of access modalities and statistical disclosure limitation. We review traditional statistical disclosure limitation methods and newer methods based on synthetic data, input noise infusion and formal privacy. We discuss how these methods are integrated with access modalities by providing three detailed examples. The first example is the linkages in the Health and Retirement Study to Social Security Administration data. The second example is the linkage of the Survey of Income and Program Participation to administrative data from the Internal Revenue Service and the Social Security Administration. The third example is the Longitudinal Employer-Household Dynamics data, which links state unemployment insurance records for workers and firms to a wide variety of censuses and surveys at the U.S. Census Bureau. For examples, we discuss access modalities, disclosure limitation methods, the effectiveness of those methods, and the resulting analytical validity. The final sections discuss recent advances in access modalities for linked administrative data.
View Full
Paper PDF