-
An Economic Analysis of Privacy Protection and Statistical Accuracy as Social Choices
August 2018
Working Paper Number:
CES-18-35
Statistical agencies face a dual mandate to publish accurate statistics while protecting respondent privacy. Increasing privacy protection requires decreased accuracy. Recognizing this as a resource allocation problem, we propose an economic solution: operate where the marginal cost of increasing privacy equals the marginal benefit. Our model of production, from computer science, assumes data are published using an efficient differentially private algorithm. Optimal choice weighs the demand for accurate statistics against the demand for privacy. Examples from U.S. statistical programs show how our framework can guide decision-making. Further progress requires a better understanding of willingness-to-pay for privacy and statistical accuracy.
View Full
Paper PDF
-
Investigating the Use of Administrative Records in the Consumer Expenditure Survey
March 2018
Working Paper Number:
carra-2018-01
In this paper, we investigate the potential of applying administrative records income data to the Consumer Expenditure (CE) survey to inform measurement error properties of CE estimates, supplement respondent-collected data, and estimate the representativeness of the CE survey by income level. We match individual responses to Consumer Expenditure Quarterly Interview Survey data collected from July 2013 through December 2014 to IRS administrative data in order to analyze CE questions on wages, social security payroll deductions, self-employment income receipt and retirement income. We find that while wage amounts are largely in alignment between the CE and administrative records in the middle of the wage distribution, there is evidence that wages are over-reported to the CE at the bottom of the wage distribution and under-reported at the top of the wage distribution. We find mixed evidence for alignment between the CE and administrative records on questions covering payroll deductions and self-employment income receipt, but find substantial divergence between CE responses and administrative records when examining retirement income. In addition to the analysis using person-based linkages, we also match responding and non-responding CE sample units to the universe of IRS 1040 tax returns by address to examine non-response bias. We find that non-responding households are substantially richer than responding households, and that very high income households are less likely to respond to the CE.
View Full
Paper PDF
-
Disclosure Limitation and Confidentiality Protection in Linked Data
January 2018
Working Paper Number:
CES-18-07
Confidentiality protection for linked administrative data is a combination of access modalities and statistical disclosure limitation. We review traditional statistical disclosure limitation methods and newer methods based on synthetic data, input noise infusion and formal privacy. We discuss how these methods are integrated with access modalities by providing three detailed examples. The first example is the linkages in the Health and Retirement Study to Social Security Administration data. The second example is the linkage of the Survey of Income and Program Participation to administrative data from the Internal Revenue Service and the Social Security Administration. The third example is the Longitudinal Employer-Household Dynamics data, which links state unemployment insurance records for workers and firms to a wide variety of censuses and surveys at the U.S. Census Bureau. For examples, we discuss access modalities, disclosure limitation methods, the effectiveness of those methods, and the resulting analytical validity. The final sections discuss recent advances in access modalities for linked administrative data.
View Full
Paper PDF
-
Just Passing Through: Characterizing U.S. Pass-Through Business Owners
January 2017
Working Paper Number:
CES-17-69
We investigate the use of administrative data on the owners of partnerships and S-corporations to develop new statistics that characterize business owners. Income from these types of entities is "passed through" to owners to be taxed on the owners' tax returns. The information returns associated with such pass-through entities (Form K1 records) make it possible to link individual owners to the businesses they own. These linkages can be leveraged to associate measures of the demographic and human capital characteristics of business owners with the characteristics of the businesses they own. This paper describes measurement issues associated with administrative records on these pass-through entities and their integration with other Census data products. In addition, we document a number of interesting trends in business ownership among pass-through entities. We show a substantial decline in both entry and exit with less churn among both owners and owned businesses. We also show that the owners of pass-through entities are older, more likely to be male, and more likely to be white compared to the working population.
View Full
Paper PDF
-
A Comparison of Training Modules for Administrative Records Use in Nonresponse Followup Operations: The 2010 Census and the American Community Survey
January 2017
Working Paper Number:
CES-17-47
While modeling work in preparation for the 2020 Census has shown that administrative records can be predictive of Nonresponse Followup (NRFU) enumeration outcomes, there is scope to examine the robustness of the models by using more recent training data. The models deployed for workload removal from the 2015 and 2016 Census Tests were based on associations of the 2010 Census with administrative records. Training the same models with more recent data from the American Community Survey (ACS) can identify any changes in parameter associations over time that might reduce the accuracy of model predictions. Furthermore, more recent training data would allow for the
incorporation of new administrative record sources not available in 2010. However, differences in ACS methodology and the smaller sample size may limit its applicability. This paper replicates earlier results and examines model predictions based on the ACS in comparison with NRFU outcomes. The evaluation
consists of a comparison of predicted counts and household compositions with actual 2015 NRFU outcomes. The main findings are an overall validation of the methodology using independent data.
View Full
Paper PDF
-
Examining Multi-Level Correlates of Suicide by Merging NVDRS and ACS Data
January 2017
Working Paper Number:
CES-17-25
This paper describes a novel database and an associated suicide event prediction model that surmount longstanding barriers in suicide risk factor research. The database comingles person-level records from the National Violent Death Reporting System (NVDRS) and the American Community Survey (ACS) to establish a case-control study sample that includes all identified suicide cases, while faithfully reflecting general population sociodemographics, in sixteen USA states during the years 2005 2011. It supports a statistical model of individual suicide risk that accommodates person-level factors and the moderation of these factors by their community rates. Named the United States Multi-Level Suicide Data Set (US-MSDS), the database was developed outside the RDC laboratory using publicly available ACS microdata, and reconstructed inside the laboratory using restricted access ACS microdata. Analyses of the latter version yielded findings that largely amplified but also extended those obtained from analyses of the former. This experience shows that the analytic precision achievable using restricted access ACS data can play an important role in conducting social research, although it also indicates that publicly available ACS data have considerable value in conducting preliminary analyses and preparing to use an RDC laboratory. The database development strategy may interest scientists investigating sociodemographic risk factors for other types of low-frequency mortality.
View Full
Paper PDF
-
Public-Use vs. Restricted-Use:
An Analysis Using the American Community Survey
January 2017
Working Paper Number:
CES-17-12
Statistical agencies frequently publish microdata that have been altered to protect confidentiality. Such data retain utility for many types of broad analyses but can yield biased or Insufficiently precise results in others. Research access to de-identified versions of the restricted-use data with little or no alteration is often possible, albeit costly and time-consuming. We investigate the the advantages and disadvantages of public-use and restricted-use data from the American Community
Survey (ACS) in constructing a wage index. The public-use data used were Public Use Microdata Samples, while the restricted-use data were accessed via a Federal Statistical Research Data Center. We discuss the advantages and disadvantages of each data source and compare estimated CWIs and standard errors at the state and labor market levels.
View Full
Paper PDF
-
Evaluating the Use of Commercial Data to Improve Survey Estimates of Property Taxes
August 2016
Working Paper Number:
carra-2016-06
While commercial data sources offer promise to statistical agencies for use in production of official statistics, challenges can arise as the data are not collected for statistical purposes. This paper evaluates the use of 2008-2010 property tax data from CoreLogic, Inc. (CoreLogic), aggregated from county and township governments from around the country, to improve 2010 American Community Survey (ACS) estimates of property tax amounts for single-family homes. Particularly, the research evaluates the potential to use CoreLogic to reduce respondent burden, to study survey response error and to improve adjustments for survey nonresponse. The research found that the coverage of the CoreLogic data varies between counties as does the correspondence between ACS and CoreLogic property taxes. This geographic variation implies that different approaches toward using CoreLogic are needed in different areas of the country. Further, large differences between CoreLogic and ACS property taxes in certain counties seem to be due to conceptual differences between what is collected in the two data sources. The research examines three counties, Clark County, NV, Philadelphia County, PA and St. Louis County, MO, and compares how estimates would change with different approaches using the CoreLogic data. Mean county property tax estimates are highly sensitive to whether ACS or CoreLogic data are used to construct estimates. Using CoreLogic data in imputation modeling for nonresponse adjustment of ACS estimates modestly improves the predictive power of imputation models, although estimates of county property taxes and property taxes by mortgage status are not very sensitive to the imputation method.
View Full
Paper PDF
-
Documenting the Business Register and Related Economic Business Data
March 2016
Working Paper Number:
CES-16-17
The Business Register (BR) is a comprehensive database of business establishments in the United States and provides resources for the U.S. Census Bureau's economic programs for sample selection, research, and survey operations. It is maintained using information from several federal agencies including the Census Bureau, Internal Revenue Service, Bureau of Labor Statistics, and the Social Security Administration. This paper provides a detailed description of the sources and functions of the BR. An overview of the BR as a linking tool and bridge to other Census Bureau data for additional business characteristics is also given.
View Full
Paper PDF
-
Food and Agricultural Industries: Opportunities
for Improving Measurement and Reporting
January 2016
Working Paper Number:
CES-16-58
We measure one component of off-farm food and agricultural industries using establishment
level microdata in the federal statistical system. We focus on services for crop production, and compare measures of firm and employment dynamics in this sector during the period 1992-2012 with county-level publicly available data for the same measures. Based on differences across data sources, we establish new facts regarding the evolution of food and agricultural industries, and demonstrate the value of working with confidential microdata. In addition to the data and results we present, we highlight possibilities for collaboration across universities and federal agencies to improve reporting in other segments of food and agricultural industries.
View Full
Paper PDF