CREAT: Census Research Exploration and Analysis Tool

Papers Containing Keywords(s): 'home'

The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
Click here to search again

Frequently Occurring Concepts within this Search

Viewing papers 11 through 20 of 26


  • Working Paper

    Individual Social Capital and Migration

    March 2018

    Working Paper Number:

    CES-18-14

    This paper determines how individual, relative to community social capital affects individual migration decisions. We make use of non-public data from the Social Capital Community Benchmark Survey to predict multi-dimensional social capital for observations in the Current Population Survey. We find evidence that individuals are much less likely to have moved to a community with average social capital levels lower than their own and that higher levels of community social capital act as positive pull-factor amenities. The importance of that amenity differs across urban/rural locations. We also confirm that higher individual social capital is a negative predictor of migration.
    View Full Paper PDF
  • Working Paper

    Two Perspectives on Commuting: A Comparison of Home to Work Flows Across Job-Linked Survey and Administrative Files

    January 2017

    Working Paper Number:

    CES-17-34

    Commuting flows and workplace employment data have a wide constituency of users including urban and regional planners, social science and transportation researchers, and businesses. The U.S. Census Bureau releases two, national data products that give the magnitude and characteristics of home to work flows. The American Community Survey (ACS) tabulates households' responses on employment, workplace, and commuting behavior. The Longitudinal Employer-Household Dynamics (LEHD) program tabulates administrative records on jobs in the LEHD Origin-Destination Employment Statistics (LODES). Design differences across the datasets lead to divergence in a comparable statistic: county-to-county aggregate commute flows. To understand differences in the public use data, this study compares ACS and LEHD source files, using identifying information and probabilistic matching to join person and job records. In our assessment, we compare commuting statistics for job frames linked on person, employment status, employer, and workplace and we identify person and job characteristics as well as design features of the data frames that explain aggregate differences. We find a lower rate of within-county commuting and farther commutes in LODES. We attribute these greater distances to differences in workplace reporting and to uncertainty of establishment assignments in LEHD for workers at multi-unit employers. Minor contributing factors include differences in residence location and ACS workplace edits. The results of this analysis and the data infrastructure developed will support further work to understand and enhance commuting statistics in both datasets.
    View Full Paper PDF
  • Working Paper

    Has Falling Crime Invited Gentrification?

    January 2017

    Working Paper Number:

    CES-17-27

    Over the past two decades, crime has fallen dramatically in cities in the United States. We explore whether, in the face of falling central city crime rates, households with more resources and options were more likely to move into central cities overall and more particularly into low income and/or majority minority central city neighborhoods. We use confidential, geocoded versions of the 1990 and 2000 Decennial Census and the 2010, 2011, and 2012 American Community Survey to track moves to different neighborhoods in 244 Core Based Statistical Areas (CBSAs) and their largest central cities. Our dataset includes over four million household moves across the three time periods. We focus on three household types typically considered gentrifiers: high-income, college-educated, and white households. We find that declines in city crime are associated with increases in the probability that highincome and college-educated households choose to move into central city neighborhoods, including low-income and majority minority central city neighborhoods. Moreover, we find little evidence that households with lower incomes and without college degrees are more likely to move to cities when violent crime falls. These results hold during the 1990s as well as the 2000s and for the 100 largest metropolitan areas, where crime declines were greatest. There is weaker evidence that white households are disproportionately drawn to cities as crime falls in the 100 largest metropolitan areas from 2000 to 2010.
    View Full Paper PDF
  • Working Paper

    Small Business Growth and Failure during the Great Recession: The Role of House Prices, Race & Gender

    November 2016

    Working Paper Number:

    carra-2016-08

    Using 2002-2011 data from the Longitudinal Business Database linked to the 2002 and 2007 Survey of Business Owners, this paper explores whether (through a collateral channel) the rise in home prices over the early 2000's and their subsequent fall associated with the Great Recession had differential impacts on business performance across owner race, ethnicity and gender. We find that the employment growth rate of minority-owned firms, particularly black and Hispanic-owned firms, is more sensitive to changes in house prices than is that of their nonminority-owned counterparts.
    View Full Paper PDF
  • Working Paper

    Evaluating the Use of Commercial Data to Improve Survey Estimates of Property Taxes

    August 2016

    Working Paper Number:

    carra-2016-06

    While commercial data sources offer promise to statistical agencies for use in production of official statistics, challenges can arise as the data are not collected for statistical purposes. This paper evaluates the use of 2008-2010 property tax data from CoreLogic, Inc. (CoreLogic), aggregated from county and township governments from around the country, to improve 2010 American Community Survey (ACS) estimates of property tax amounts for single-family homes. Particularly, the research evaluates the potential to use CoreLogic to reduce respondent burden, to study survey response error and to improve adjustments for survey nonresponse. The research found that the coverage of the CoreLogic data varies between counties as does the correspondence between ACS and CoreLogic property taxes. This geographic variation implies that different approaches toward using CoreLogic are needed in different areas of the country. Further, large differences between CoreLogic and ACS property taxes in certain counties seem to be due to conceptual differences between what is collected in the two data sources. The research examines three counties, Clark County, NV, Philadelphia County, PA and St. Louis County, MO, and compares how estimates would change with different approaches using the CoreLogic data. Mean county property tax estimates are highly sensitive to whether ACS or CoreLogic data are used to construct estimates. Using CoreLogic data in imputation modeling for nonresponse adjustment of ACS estimates modestly improves the predictive power of imputation models, although estimates of county property taxes and property taxes by mortgage status are not very sensitive to the imputation method.
    View Full Paper PDF
  • Working Paper

    Structural versus Ethnic Dimensions of Housing Segregation

    March 2016

    Working Paper Number:

    CES-16-22

    Racial residential segregation is still very high in many American cities. Some portion of segregation is attributable to socioeconomic differences across racial lines; some portion is caused by purely racial factors, such as preferences about the racial composition of one's neighborhood or discrimination in the housing market. Social scientists have had great difficulty disaggregating segregation into a portion that can be explained by interracial differences in socioeconomic characteristics (what we call structural factors) versus a portion attributable to racial and ethnic factors. What would such a measure look like? In this paper, we draw on a new source of data to develop an innovative structural segregation measure that shows the amount of segregation that would remain if we could assign households to housing units based only on non-racial socioeconomic characteristics. This inquiry provides vital building blocks for the broader enterprise of understanding and remedying housing segregation.
    View Full Paper PDF
  • Working Paper

    Bright Minds, Big Rent: Gentrification and the Rising Returns to Skill

    January 2016

    Working Paper Number:

    CES-16-36R

    In 1980, Census data indicate, housing prices in large US cities rose with distance from the city center. By 2010, the relationship had reversed. We propose that this development can be traced to high-income households working longer hours. With little non-market time, proximity to work takes on added salience, leading high-income households to forgo suburban amenities and extending the gentrification trend beyond its 1970s niche status. In a tract-level data set covering the 27 largest US cities, years 1980-2010, we find support for our hypothesis. Using a Bartik-type demand shifter for skilled labor we find that full-time skilled workers favor centrality and the rising share in the population can account for the observed price changes in favor of the city center.
    View Full Paper PDF
  • Working Paper

    UNEMPLOYMENT DURATION AND GEOGRAPHIC MOBILITY: DO MOVERS FARE BETTER THAN STAYERS?

    October 2014

    Working Paper Number:

    CES-14-41

    This study uses a sample of unemployed workers constructed from the American Community Survey and the LEHD database, to compare the unemployment durations of those who find subsequent employment by relocating to a metropolitan area outside of their originally observed residence, versus those who find employment in their original location. Results from a hazard analysis confirm the importance of many of the determinants of migration posited in the literature, such as age, education, and local labor market conditions. While simple averages and OLS estimates indicate that migrating for a new job reduces the probability of re-employment within a given time frame and lengthens the spell of unemployment in the aggregate, after controlling for selection into migration using an IV approach based on local house price changes, the results suggest that out-migrating for employment actually has a large and significant beneficial effect of shortening the time to re-employment. This implies that those who migrate for jobs in the data may be particularly disadvantaged in their ability to find employment and thus have a strong short-term incentive to relocate.
    View Full Paper PDF
  • Working Paper

    Comparison of Survey, Federal, and Commercial Address Data Quality

    June 2014

    Authors: Quentin Brummet

    Working Paper Number:

    carra-2014-06

    This report summarizes matching of survey, commercial, and administrative records housing units to the Census Bureau Master Address File (MAF). We document overall MAF match rates in each data set and evaluate differences in match rates across a variety of housing characteristics. Results show that over 90 percent of records in survey data from the American Housing Survey (AHS) match to the MAF. Commercial data from CoreLogic matches at much lower rates, in part due to missing address information and poor match rates for multi-unit buildings. MAF match rates for administrative records from the Department of Housing and Urban Development are also high, and open the possibility of using this information in surveys such as the AHS.
    View Full Paper PDF
  • Working Paper

    FALLING HOUSE PRICES AND LABOR MOBILITY: EVIDENCE FROM MATCHED EMPLOYER-EMPLOYEE DATA

    August 2013

    Working Paper Number:

    CES-13-43

    This study uses worker-level employment data from the U.S. Census Bureau to test whether falling home prices affect a worker's propensity to take a job in a different metropolitan area from where he is currently located. Using a sample of workers from the American Community Survey, I employ a within-MSA-time estimation that compares homeowners to renters in their propensities to relocate for jobs according to data from the Longitudinal Employer Household Dynamics database. This strategy allows me to disentangle the influence of house prices from that of other time-varying, location-specific shocks. Estimates show that homeowners who have experienced declines in the nominal value of their home are approximately 20% less likely to take a new job in a location outside of the metropolitan area that they currently live and work in, relative to an equivalent renter. This evidence is consistent with the hypothesis that housing lock-in has contributed to the decreased labor mobility of homeowners during the recent housing bust.
    View Full Paper PDF